

Adaptation in Action in the Harrop – Procter Community Forest

BCCFA conference June 12, 2024

Erik Leslie, RPF Forest Manager, Harrop-Procter Community Co-op

WHY THIS PROJECT? Lots of talk, not enough action

Disconnect between climate adaptation theory and management actions on the ground

Need real-world management examples

Adaptation: generalities \rightarrow specifics

- 'Promote resilience'
- 'Enhance landscape diversity'
- 'Partial cut dry sites'

- What? How?
- Species and age targets?
- Priorities? How?

Overview of project

Risk assessment—*Where* do we prioritize management actions?

Operations strategy—*How* do we manage for adaptation? **Harvest rates** / **AAC—***How fast* do we adapt?

Risk Assessment

Prioritize areas for adaptation actions

Focus on next 20 to 40 years

RISK = Probability x Consequence

Probability of: Consequence to:

- Fire
- Drought

- Homes
- Water
- Biodiversity
- Timber

RISK MATRIX							
		Fire Consequence					
2		High	Moderate	Low	Very_low		
Fire Probability	Extreme	Extreme	High	High	Low		
	High	High	High	Moderate	Low		
	Moderate	High	Moderate	Moderate	Low		
	Low	Moderate	Moderate	Low	Low		
	Very Low	Moderate	Low	Low	Low		

Consequence mapping: Values

- Homes
- Water
- Biodiversity
- Timber

Probability of fire and drought: Actual Soil Moisture Regime (ASMR)

Drought probability: ASMR limits

See current work of Future Forest Ecosystem Centre

Fire probability

Fire probability: likelihood of high severity fire

Did not use provincial algorithm

Fuel Load	ASMR					
Fuel_Load	A_DRY	B_MOD	C_MOIST	D_WET		
a_Extreme	a_Extreme	a_Extreme	a_High	d_V_Low		
a_High	a_Extreme	a_High	b_Mod	d_V_Low		
b_Moderate	a_High	b_Mod	C_Low	d_V_Low		
c_Low	b_Mod	C_Low	C_Low	d_V_Low		
d_Very_Low	d_V_Low	d_V_Low	d_V_Low	d_V_Low		

Adjust fuel load/ ASMR rating based on

- Slope
- Percent dead pine/ balsam

Risk assessment conclusions

Highest risk areas

Homes: Untreated WUI (except moist sites)

Water: Headwaters areas with high fire likelihood

Biodiversity: Old forests on drier sites

Timber: Cedar / hemlock on drier sites

Triage—need to prioritize

Adaptation options - concept

Adaptation options - examples

Resistance

- Construct fuel breaks
- Protect old forests & riparian (hold carbon)
- Connectivity—reserves

Transition

- Transform forest structure
- New stocking standards
 - Ponderosa pine, deciduous
- Connectivity—treatments

Strategy: Promote landscape diversity

- Resilience strategy
 - Subregional and watershed scales
- Diversify forest composition and structure
- Variable patch sizes and retention levels
- Develop through landscape planning

Strategy: Reserve (and protect)

- Resistance strategy
- Desired future conditions similar to current conditions
- High value (high consequence) areas
 - Rare ecosystems/ old growth
 - Headwaters of community watersheds
- Risk: may be rowing upstream against climate changes

Strategy: Landscape fuel breaks

- Resistance strategy (watershed level)
- Connected across WUI
- Between watersheds (firesheds)

Strategy: reduce density on dry sites

- Resilience strategy
- Prioritize based on drought likelihood (actual soil moisture regimes)
- Partial cutting to promote drought tolerant species
 - Commercial thinning, spacing
- Promote through WUI fuel treatments

Strategy: Convert maladapted stands

- Transition strategy
 - Current conditions not compatible with desired future conditions
- For high timber risk stands (proactive salvage)
- Reset new trajectory

Carbon carrying capacity

Peak carbon: June 2003

Where can we hold carbon?

- short-term vs long-term
- manage transition

Hold carbon (resist) on moist sites

Proactively reduce carbon (transition) on drier sites

Harvest rates –AAC reconsidered

How fast do we transition?

Revise timber supply assumptions

- Unsalvaged losses
- Growth rates

Reconsider 'sustained yield' and 'even flow'

Social choices—based on risks

Elevated Initial Harvest Rate- Community Forest K1B THLB 2050 Conditions- Unsalvaged Losses to Forest Health Agents of 3%/10%/20% per Year Depending on Stand Drought Probability 14,000 m3/year, then 3,200 m3/yr, then 6,600 m3/yr Harvest Rate

CLIMATE CHANGE AND NEW APPROACHES TO WILDFIRE RISK REDUCTION

HP Community Forest - YouTube

Thank you!

